In a plasma, the Debye length is
where λD is the Debye length, ε0 is the permittivity of free space, k is Boltzmann's constant, qe is the charge on an electron, Te and Ti are the temperatures of the electrons and ions, respectively, ne is the density of electrons, nij is the density of atomic species i, with positive ionic charge jqe The ion term is often dropped, giving
although this is only valid when the ions are much colder than the electrons. http://www.plasma-universe.com/Debye_length
See Also
3.14 - Vortex Theory of Atomic Motions 13.04 - Atomic Subdivision atomic Atomic Cluster X-Ray Emission Atomic Clusters Atomic Force atomic mass atomic number atomic theory atomic triplet atomic weight Debye Continuum Debye length Debye length in a plasma Debye length in an electrolyte Debye, Peter Debye Sphere diatomic Etheric Orbital Rotations Figure 13.06 - Atomic Subdivision Force-Atomic Formation of Atomic Clusters Inert Gas Interaction of Intense Laser Pulses with Atomic Clusters - Measurements of Ion Emission Simulations and Applications TD69.pdf InterAtomic Laser Cluster Interactions Law of Atomic Dissociation Law of Atomic Pitch Law of Oscillating Atomic Substances Law of Pitch of Atomic Oscillation Law of Variation of Atomic Oscillation by Electricity Law of Variation of Atomic Oscillation by Sono-thermism Law of Variation of Atomic Oscillation by Temperature Law of Variation of Atomic Pitch by Electricity and Magnetism Law of Variation of Atomic Pitch by Rad-energy Law of Variation of Atomic Pitch by Temperature Law of Variation of Pitch of Atomic Oscillation by Pressure Models of Laser Cluster Interactions monatomic Nanoplasma Plasma Plasma holes Quasi-neutrality Quasi-neutrality and Debye length Specific Heat Violation of quasi-neutrality