Ramsay
In a similar and responsive way Duality provides for the six major scales with flats.
The two new notes required for the scale of
F major are the B? of D, and the D of A minor;
for B? major, the E? of G, and the G of D minor;
for E? major, the A? of C, and the C of G minor;
for A? major, the D? of F, and the F of C minor;
for D? major, the G? of B?, and the B? of F minor;
for G? major, the C? of E?, and the E? of B? minor.1 [Scientific Basis and Build of Music, page 90]
The Plate shows the Twelve Major and Minor Scales, with the three chords of their harmony - subdominant, tonic, and dominant; the tonic chord being always the center one. The straight lines of the three squares inside the stave embrace the chords of the major scales, which are read toward the right; e.g., F, C, G - these are the roots of the three chords F A C, C E G, G B D. The tonic chord of the scale of C becomes the subdominant chord of the scale of G, etc., all round. The curved lines of the ellipse embrace the three chords of the successive scales; e.g., D, A, E - these are the roots of the three chords D F A, A C E, E G B. The tonic chord of the scale of A becomes the subdominant of the scale of E, etc., all round. The sixth scale of the Majors may be written B with 5 sharps, and then is followed by F with 6 sharps, and this by C with 7 sharps, and so on all in sharps; and in this case the twelfth key would be E with 11 sharps; but, to simplify the signature, at B we can change the writing into C, this would be followed by G with 6 flats, and then the signature dropping one flat at every new key becomes a simpler expression; and at the twelfth key, instead of E with 11 sharps we have F with only one flat. Similarly, the Minors make a change from sharps to flats; and at the twelfth key, instead of C with 11 sharps we have D with one flat. The young student, for whose help these pictorial illustrations are chiefly prepared, must observe, however, that this is only a matter of musical orthography, and does not practically affect the music itself. When he comes to the study of the mathematical scales, he will be brought in sight of the exact very small difference between this B and C?, or this F# and G?; but meanwhile there is no difference for him. [Scientific Basis and Build of Music, page 108]
In the center column are the notes, named; with the lesser and larger steps of their mathematical evolution marked with commas, sharps, and flats; the comma and flat of the descending evolution placed to the left; the comma and sharp of the ascending evolution to the right; and in both cases as they arise. If a note is first altered by a comma, this mark is placed next to the letter; if first altered by a sharp or flat, these marks are placed next the letter. It will be observed that the sharpened note is always higher a little than the note above it when flattened; A# is higher than ?B; and B is higher than ?C, etc.; thus it is all through the scales; and probably it is also so with a fine voice guided by a true ear; for the natural tendency of sharpened notes is upward, and that of flattened notes downward; the degree of such difference is so small, however, that there has been difference of opinion as to whether the sharp and ? have a space between them, or whether they overlap, as we have shown they do. In tempered instruments with fixed keys the small disparity is ignored, and one key serves for both. In the double columns right and left of the notes are their mathematical numbers as they arise in the Genesis of the scales. In the seven columns right of the one number-column, and in the six on the left of the other, are the 12 major and their 12 relative minor scales, so arranged that the mathematical number of their notes is always standing in file with their notes. D in A minor is seen as 53 1/3, while the D of C major is 54; this is the comma of difference in the primitive Genesis, and establishes the sexual distinction of major and minor all through. The fourth of the minor is always a comma lower than the second of the major, though having the same name; this note in the development of the scales by flats drops in the minor a comma below the major, and in the development of the scales by sharps ascends in the major a comma above the minor. In the head of the plate the key-notes of the 12 majors, and under them those of their relative minors, are placed over the respective scales extended below. This plate will afford a good deal of teaching to a careful student; and none will readily fail to see beautiful indications of the deep-seated Duality of Major and Minor. [Scientific Basis and Build of Music, page 109]
Hughes
The difference in the development of a major and a minor harmony
—The twelve developing keys mingled
—D? shown to be an imperfect minor harmony
—E? taking B? as C? to be the same as D#
—The intermediate tones of the seven white notes are coloured, showing gradual modulation
—As in the diagram of the majors, the secondaries are written in musical clef below the primaries, each minor primary sounding the secondaries of the third harmony below, but in a different order, and one tone rising higher, . . . . . 34 [Harmonies of Tones and Colours, Table of Contents3 - Harmonies]
The only exception is the double tone F#-G?, which is a curious study. F# as a harmony takes the double tones as sharps, and F? is E#. G? is also a harmony sounding the same tones, by taking the double tones as flats, and B? as C?. F# therefore takes the imperfect tone of E#, and G? the imperfect tone of C?. (See here the harmony of G? in musical clef.) [Harmonies of Tones and Colours, Combinations of dissonance, rests, page 24]
The Major Key-note of C is here shewn developing its trinities from within itself, veering round; C and the other 11 developing their trinities in musical clef. Below each is the order in which the pairs meet, avoiding consecutive fifths. Lastly, C# is seen to be an imperfect major harmony; and G?, with B as C?, make the same harmony as F#. The intermediate tones of sharps and flats of the 7 white notes are here coloured in order to shew each harmony, but it must be remembered that they should, strictly, have intermediate tints. [Harmonies of Tones and Colours, The Major Keynote of C, page 24c]
When the twelve minor harmonies are traced developing in succession, we notice how exactly they all agree in their method of development, also the use of the chasms and the double tones, the seven of each harmony rising a tone when ascending, but reversing the movement in descending; keys with sharps and those with flats are mingled. The intermediate tones are here coloured, showing gradual modulation. D? is shown to be an imperfect minor harmony, and E?, by employing B as C?, is seen to be equivalent to D#. [Harmonies of Tones and Colours, Diagram IX - The Minor Keynote A and Its Six Notes, page 34a]
The diagram represents the Minor Key-note A and its 6 notes veering round in trinities; A and the other 11 developing their trinities in musical clef. Below each is the order in which the pairs unite, avoiding consecutive fifths, Lastly, D? is shewn to be an imperfect minor harmony, and by employing B as C?, E? is seen to be the same harmony as D#. As before, it should be remembered that the sharp and flat notes should, strictly, have intermediate tints. [Harmonies of Tones and Colours, The Diagram Represents the Minor Keynote, page 34c]
In the musical clef the sixth and seventh notes from A, the fundamental minor key-note, are repeated, in order to show the use of the poles D#-C?, and that the colours agree. The use of the two poles, both in the major and minor series, is strikingly evident. [Harmonies of Tones and Colours, Diagram X - Minor Keynotes Developing by Sevens, page 35a]
See Also