Loading...
 

quasiparticle

In physics, quasiparticles and collective excitations (which are closely related) are emergent phenomena that occur when a microscopically complicated system such as a solid behaves as if it contained different weakly interacting particles in free space. For example, as an electron travels through a semiconductor, its motion is disturbed in a complex way by its interactions with all of the other electrons and nuclei; however it approximately behaves like an electron with a different mass (effective mass) traveling unperturbed through free space. This "electron" with a different mass is called an "electron quasiparticle". In another example, the aggregate motion of electrons in the valence band of a semiconductor is the same as if the semiconductor instead contained positively charged quasiparticles called holes. Other quasiparticles or collective excitations include phonons (particles derived from the vibrations of atoms in a solid), plasmons (particles derived from plasma oscillations), and many others.

These particles are typically called "quasiparticles" if they are related to fermions, and called "collective excitations" if they are related to bosons, although the precise distinction is not universally agreed upon. Thus, electrons and holes are typically called "quasiparticles", while phonons and plasmons are typically called "collective excitations".

The quasiparticle concept is most important in condensed matter physics since it is one of the few known ways of simplifying the quantum mechanical many-body problem. Wikipedia, Quasiparticle

Created by Dale Pond. Last Modification: Thursday May 4, 2017 05:59:02 MDT by Dale Pond.