Loading...
 

14.08 - Thirds as Assimilatives

"If the sympathetic condition of any physical organism carries a positive flow of 80 per cent on its whole combination, and a negative one of 20 per cent, it is the medium of perfect assimilation to one of the same ratio, if it is distributed under the same conditions to the mass of the other. If two masses of metal, of any shape whatever, are brought under perfect assimilation, to one another, their unition, when brought into contact, will be instant. If we live in a sympathetic field we become sympathetic, and a tendency from the abnormal to the normal presents itself by an evolution of a purely sympathetic flow towards its attractive centres. It is only under these conditions that differentiation can be broken up, and a pure equation established. The only condition under which equation can never be established is when a differential disaster has taken place, of 66 2/3 against the 100 pure, taking the full volume as one. If the 66 2/3 or even 100 exists in one organ alone, and the surrounding ones are normal, then a condition can be easily brought about to establish the concordant harmony or equation to that organ. It is as rare to find a negative condition of 66 2/3 against the volume of the whole cerebral mass, as it is to find a coincident between differentiation; or, more plainly, between two individuals under a state of negative influence. Under this new system it is as possible to induce negations alike as it is to induce positives alike." Keely and His Discoveries, Chapter VII, Part IV, Cure of Disease

See Also


3.13 - Reciprocals and Proportions of Motions and Substance
6.8 - Proportionate and Relative Geometries
9.12 - Velocity of Sound and its Propagation Rate are Proportional
12.00 - Reciprocating Proportionality
Figure 6.17 - Areas and Volumes - Relations and Proportions
Figure 6.19 - Sphere to Cube - Relations and Proportions
Figure 14.10 - Proportionate Tonal Relations dictate Contraction or Expansion
Reciprocating Proportionality

Created by Trene. Last Modification: Thursday December 15, 2011 07:13:01 MST by Trene.